Geometría - Vectores

Índice	
1. Introducción	2
2.1 Elementos de un vector	2 2 3 4
3.1. Operaciones de forma gráfica	5 5 5 5 6 6 6 6 7 8
4. Aplicaciones de los vectores 4.1. Cálculo del punto medio de un segmento	9 9
5. Ejercicios	9

1. Introducción

La geometría es la parte de las matemáticas que se dedica a estudiar las propiedades de las figuras geométricas. Vamos a estudiar dos temas dentro de la rama de la geometría: Los vectores y La recta.

Solemos normalmente, hacernos un lío con la notación en geometría, vamos a aclarar un par de cosillas antes de empezar en serio con el tema.

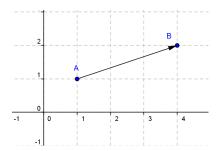
Trataremos en este tema con dos figuras: El punto y vectores:

CÓMO SE ESCRIBEN LAS COSILLAS EN GEOMETRÍA

- **PUNTOS**: Se escriben siempre con letra mayúscula, seguido de paréntesis y las dos coordenadas con respecto al sistema de referencia: Ejemplo: A(2,3); B(5,-1)
- **VECTORES**: Se pueden escribir de dos formas, o bien con una letra minúscula con una flechita arriba (Ejemplo: \vec{v}) o bien indicando el extremo (A) y el origen (B) y una flechita arriba (Ejemplo: \overrightarrow{AB})

2. Vectores

Un vector fijo \overrightarrow{AB} es un segmento orientado que va del punto A (origen) al punto B (extremo).



2.1. Elementos de un vector

Un vector consta de varias partes o elementos que lo forman:

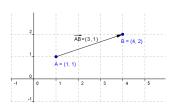
- Dirección de un vector: Es la dirección de la recta que contiene al vector o cualquier recta paralela a ella.
- Sentido de un vector: El sentido de un vector \overrightarrow{AB} es el que va desde el origen A al extremo B.
- **Módulo de un vector**: El módulo de un vector \overrightarrow{AB} es la longitud del segmento \overrightarrow{AB} . Debido a que es una longitud, es un número siempre positivo o cero.
- Coordenadas: Las coordenadas de un vector respecto a un sistema de referencia o base, son las componentes con respecto a esa base.

2.2. Cálculo de las coordenadas de un vector dado su extremo y origen

Si nos dan el extremo y el origen de un vector, podemos calcular sus coordenadas mediante la siguiente expresión:

 $\overrightarrow{AB} = B - A$

Calculemos las coordenadas del ejemplo anterior:



$$A = (1,1) B = (4,2)$$

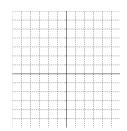
$$\overrightarrow{AB} = B - A = (4,2) - (1,1) = (3,1)$$

Ejercicios:

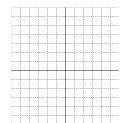
1. Calcula el vector cuyo origen es: A(-1, -3) y extremo B(2, -5). Representa gráficamente los puntos y el vector.



2. Calcula el origen del vector $\vec{v}=(3,2)$ sabiendo que su extremo es D(3,6). Representa gráficamente los puntos y el vector.



3. Calcula el extremo del vector $\vec{w}=(1,-3)$ si su origen es E(4,1). Representa gráficamente los puntos y el vector.



Soluciones: a) $\overrightarrow{AB} = (3, -2)$; b) C(0, 4); c)F(5, -2)

2.3. Cálculo del módulo de un vector

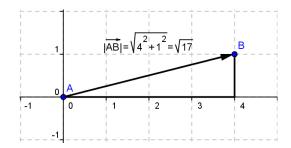
Para calcular el módulo de un vector primero tenemos que calcular las coordenadas del mismo $\vec{v}=(v_x,v_y)$

Una vez halladas el módulo del vector:

Módulo:
$$|\vec{v}| = \sqrt{v_x^2 + v_y^2}$$

Ejemplo:

$$\overrightarrow{AB} = (4,1) \Rightarrow |\overrightarrow{AB}| = \sqrt{4^2 + 1^2} = \sqrt{17}$$



Ejercicios:

1. Calcula el módulo del vector $\vec{v} = (3, 2)$

2. Calcula el módulo del vector $\vec{w} = (1, -3)$

3. Calcula el módulo del vector cuyo origen es: A(-1, -3) y extremo B(2, -5).

4. Calcula la distancia entre los puntos A(2,1) y B(-3,2)

Soluciones: 1) $|\vec{v}| = \sqrt{13}$; 2) $|\vec{w}| = \sqrt{10}$; 3) $|\overrightarrow{AB}| = \sqrt{13}$; 4) $d(AB) = \sqrt{26}$

3. Operaciones con vectores

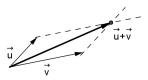
3.1. Operaciones de forma gráfica

3.1.1. Suma gráfica de vectores

Para sumar dos vectores libres \vec{u} y \vec{v} se escogen como representantes dos vectores tales que el extremo final de uno coincida con el extremo origen del otro y se une el origen con el extremo.

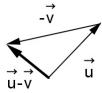
También se pueden sumar haciendo uso de la Regla del paralelogramo:

Se toman como representantes dos vectores con el origen en común y se trazan rectas paralelas a los vectores desde los extremos de ámbos obteniéndose un paralelogramo cuya diagonal coincide con la suma de los vectores.



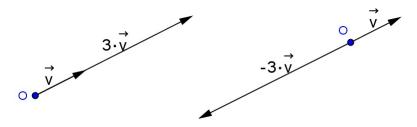
3.1.2. Resta gráfica de vectores

Para restar dos vectores libres \vec{u} y \vec{v} se suma \vec{u} con el opuesto de \vec{v} por cualquiera de los métodos anteriores.



3.1.3. Producto gráfico de un número por un vectores

El producto de un número cualquiera k por un vector \vec{v} es otro vector de igual dirección y sentido que el vector \vec{v} si k es positivo; y de igual dirección y sentido contrario que el vector \vec{v} si k es negativo, y cuyo módulo es $k \cdot |\vec{v}|$. Gráficamente se representa con un vector k veces mayor que \vec{v} con la misma dirección y de sentido igual o contrario según el signo de k



3.2. Operaciones de forma analítica

3.2.1. Suma analítica de vectores

Para sumar analíticamente dos vectores dadas sus coordenadas basta sumar sus respectivas componentes.

Ejemplo:

$$\vec{u} = (3,2)$$

 $\vec{v} = (-1,5)$ $\vec{v} = (3,2) + (-1,5) = (2,7)$

3.2.2. Resta analítica de vectores

Para restar analíticamente dos vectores dadas sus coordenadas basta restar sus respectivas componentes.

Ejemplo:

$$\vec{u} = (3,2) \vec{v} = (-1,5)$$
 $\vec{v} = (3,2) - (-1,5) = (4,-3)$

3.2.3. Producto de un número por un vector

Para multiplicar analíticamente un número por un vector, basta con multiplicar el número por sus coordenadas

Ejemplo:

$$k = 3$$

 $\vec{v} = (-1, 5)$ $3 \cdot \vec{v} = 3 \cdot (-1, 5) = (-3, 15)$

Ejercicio: Las coordenadas de dos vectores son: $\vec{a} = (2, -3)$ y $\vec{b} = \left(-\frac{1}{2}, 2\right)$. Calcula:

a)
$$-3 \cdot \vec{a} + 2 \cdot \vec{b}$$

b)
$$\frac{1}{3} \left(\vec{a} - \vec{b} \right)$$

3.2.4. Multiplicación de vectores: Producto escalar de vectores

La multiplicación de vectores ya es un temita más complicado. Este curso daremos solo el llamado **producto escalar**. Se llama así porque el resultado es un escalar (es decir, **un número**) y no un vector.

Si tenemos dos vectores:

$$\vec{v} = (v_x, v_y)$$

 $\vec{u} = (u_x, y_y)$ Se define el producto escalar: $\vec{v} \cdot \vec{u} = v_x \cdot u_x + v_y \cdot u_y$

Ejemplo:

$$\vec{v} = (2, -5)$$

 $\vec{u} = (3, 1)$ $\} \Rightarrow \vec{v} \cdot \vec{u} = 2 \cdot 3 + (-5) \cdot 1 = 6 - 5 = 1$

Ejercicio: Las coordenadas de dos vectores son: $\vec{a} = (2, -3)$ y $\vec{b} = \left(-\frac{1}{2}, 2\right)$. Calcula $\vec{a} \cdot \vec{b}$

Sol: -7

Existe otra definición de producto escalar dada por los módulos y el ángulo que forman dos vectores, en lugar de sus coordenadas:

 $|\vec{v}|$: Módulo del vector \vec{v}

 $|\vec{u}|$: Módulo del vector \vec{u} α : Ángulo que forman los vectores \vec{v} y \vec{u}

Se define el producto escalar: $\vec{v} \cdot \vec{u} = |\vec{v}| \cdot |\vec{u}| \cdot \cos \alpha$

Ejercicio: Sabiendo que $|\vec{u}| = 3$, $|\vec{v}| = 2$ y que forman un ángulo de 90° , calcula su producto escalar. ¿Qué observas?

3.2.5. Ángulo entre dos vectores

Con la definición de producto escalar anterior, es muy sencillo sacar la expresión matemática para calcular el ángulo entre dos vectores:

$$\vec{v} \cdot \vec{u} = |\vec{v}| \cdot |\vec{u}| \cdot \cos \alpha \Rightarrow \boxed{\cos \alpha = \frac{\vec{v} \cdot \vec{u}}{|\vec{v}| \cdot |\vec{u}|}}$$

Ejercicios:

1. Halla el ángulo que forman los vectores: $\vec{u}=(2,1)$ y $\vec{v}=(1,3)$ y represéntalos. Sol: 45°

2. Halla el ángulo que forman los vectores: $\vec{u}=(4,1)$ y $\vec{v}=(-2,8)$ y represéntalos. Sol: 90°

3. Halla el ángulo que forman los vectores: $\vec{u}=(2,1)$ y $\vec{v}=(-9,3)$ y represéntalos. $Sol:~135^{\rm o}$

4. Halla el ángulo que forman los vectores $\vec{a}=(\sqrt{3},1)$ y $\vec{b}=(1,\sqrt{3})$ Sol: 30°

4. Aplicaciones de los vectores

4.1. Cálculo del punto medio de un segmento

Si tenemos un segmento de extremos $A(x_1, y_1)$ y $B(x_2, y_2)$, el punto medio del segmento M, tendrá como coordenadas:

$$M = \frac{A+B}{2} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Ejercicio: Calcula el punto medio del segmento que tiene como extremos (2,-1) y (6,5) y represéntalo gráficamente

4.2. Condición para que tres puntos están alineados

Tres puntos $A(x_1, y_1)$, $B(x_2, y_3)$ y $C(x_3, y_3)$ están alineados si los vectores \overrightarrow{AB} y \overrightarrow{AC} tienen la misma dirección, y esto se cumple siempre que sus coordenadas sean proporcionales:

$$\boxed{\frac{x_2 - x_1}{x_3 - x_2} = \frac{y_2 - y_1}{y_3 - y_2}}$$

Ejercicio: Indica si los puntos A(2,-1), B(6,5) y C(1,3) están alineados y represéntalos gráficamente

Ejercicios 5.

- 1. Calcula el vector cuyo origen es: A(-1, -3) y extremo B(2, -5). Representa gráficamente los puntos y el vector.
- 2. Calcula el origen del vector $\vec{v} = (3, 2)$ sabiendo que su extremo es D(3, 6). Representa gráficamente los puntos y el vector.
- 3. Calcula el extremo del vector $\vec{w} = (1, -3)$ si su origen es E(4, 1). Representa gráficamente los puntos y el vector.
- 4. Calcula el módulo del vector cuyo origen es: A(-1, -3) y extremo B(2, -5).
- 5. Calcula el módulo del vector $\vec{v} = (3, 2)$
- 6. Calcula el módulo del vector $\vec{w} = (1, -3)$
- 7. Calcula la distancia entre los puntos A(2,1) y B(-3,2)
- 8. Ejercicio: Sean $\vec{a} = (-1, 3)$ y $\vec{b} = (1, 2)$, calcula:

a)
$$\vec{u} = \vec{a} + \vec{b}$$

b)
$$\vec{v} = 2\vec{a} + 3\vec{b}$$

a)
$$\vec{u} = \vec{a} + \vec{b}$$
 b) $\vec{v} = 2\vec{a} + 3\vec{b}$ c) $\vec{w} = -2\vec{a} - \vec{b}$

d)
$$\vec{w} = -2\vec{a} - \vec{b}$$
 e) $\vec{a} \cdot \vec{b}$

e)
$$\vec{a} \cdot \vec{b}$$

- f) El ángulo que forman \vec{a} y \vec{b}
- 9. Las coordenadas de los puntos A, B, C, D, son:

$$A = (0,0)$$

$$B = (-1, 3)$$

$$B = (-1,3)$$
 $C = (-2,-2)$ $D = (1,-3)$

$$D = (1, -3)$$

Calcula el resultado de las siguientes operaciones:

a)
$$\overrightarrow{AB} + \overrightarrow{CD}$$

b)
$$\overrightarrow{AB} - \overrightarrow{CD}$$

b)
$$\overrightarrow{AB} - \overrightarrow{CD}$$
 c) $\overrightarrow{AB} + \overrightarrow{AB}$

d)
$$\overrightarrow{CD} - \overrightarrow{CD}$$

d)
$$\overrightarrow{CD} - \overrightarrow{CD}$$
 e) $\overrightarrow{CD} - \overrightarrow{AB}$ f) $\overrightarrow{CD} + \overrightarrow{AB}$

f)
$$\overrightarrow{CD} + \overrightarrow{AB}$$

- 10. Si $\vec{u} = (-2,3)$ y $\vec{w} = (4,-1)$, determina el vector \vec{v} tal que $\vec{u} + \vec{w} = \vec{v}$
- 11. Efectúa las siguientes operaciones con los vectores $\vec{u} = (6,2)$ y $\vec{v} = (-2,1)$
 - a) $2\vec{u} + 3\vec{v}$
 - b) $-\vec{u} \vec{v}$
 - c) $\vec{u} \cdot \vec{v}$
 - d) Angulo que forman \vec{u} y \vec{v}
- 12. Obtén el módulo del vector \overrightarrow{AB} :
 - a) A = (1,1) y B = (2,3)

b)
$$A = (-4, 1) \text{ y } B = (5, -2)$$

c)
$$A = (3, -2) \text{ v } B = (1, -1)$$

c)
$$A = (3, -2)$$
 y $B = (1, -1)$ d) $A = (-3, 0)$ y $B = (0, 4)$

- 13. Sabiendo que A(8,-3), B(5,-1) y C(4,3), calcula:

 - a) $3 \cdot \overrightarrow{AB}$ b) $-5 \cdot \overrightarrow{BC}$
- c) $-2 \cdot \overrightarrow{CA}$

- d) $4 \cdot \overrightarrow{AC}$ e) $\overrightarrow{BA} + 3 \cdot \overrightarrow{BC}$ f) $\overrightarrow{AC} 4 \cdot \overrightarrow{AB}$